Genomic Analysis Reveals a Common Breakpoint in Amplifications of the Plasmodium vivax Multidrug Resistance 1 Locus in Thailand
نویسندگان
چکیده
In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6-kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003-2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms.
منابع مشابه
Clinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...
متن کاملGenetic mutations in 57 and 58 codons gene of Plasmodium vivax dihydrofolate reductase
Introduction: The use of Sulfadoxine and pyrimethamine (SP) for treatment of vivax malaria is not common in most of malarious areas because of sensivity of this parasite to chloroquine. But, Plasmodium vivax isolates are exposed to SP because of mixed infection with P.falciparum and this subject has lead to emergence of mutations in P.vdhfr gene. As Plasmodium vivax is the most prevalent specie...
متن کاملDetection of Putative Antimalarial-resistant Plasmodium Vivax in Anopheles Vectors at Thailand-cambodia and Thailand-myanmar Borders.
Monitoring of multidrug-resistant (MDR)falciparum and vivax malaria has recently been included in the Global Plan for Artemisinin Resistance Containment (GPARC) of the Greater Mekong Sub-region, particularly at the Thailand-Cambodia and Thailand-Myanmar borders. In parallel to GPARC, monitoring MDR malaria parasites in anopheline vectors is an ideal augment to entomological surveillance. Employ...
متن کاملBorder Malaria Associated with Multidrug Resistance on Thailand-Myanmar and Thailand-Cambodia Borders: Transmission Dynamic, Vulnerability, and Surveillance
This systematic review elaborates the concepts and impacts of border malaria, particularly on the emergence and spread of Plasmodium falciparum and Plasmodium vivax multidrug resistance (MDR) malaria on Thailand-Myanmar and Thailand-Cambodia borders. Border malaria encompasses any complex epidemiological settings of forest-related and forest fringe-related malaria, both regularly occurring in c...
متن کاملIdentification of the Plasmodium vivax mdr-like gene (pvmdr1) and analysis of single-nucleotide polymorphisms among isolates from different areas of endemicity.
Because of the lack of methods for continuous in vitro culture of Plasmodium vivax, little is known about drug-resistance mechanisms in this malaria-causing parasite. Therefore, identification of all the genes potentially involved in drug resistance and of molecular markers related to drug resistance would provide a framework for studying the incidence and spread of drug-resistant P. vivax stra...
متن کامل